Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Oncol ; 18(2): 245-279, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135904

RESUMEN

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities. The conference organized by the Pontifical Academy of Sciences in collaboration with the European Academy of Cancer Sciences discussed the inequality problem, dependent on the economic status of a country, the increasing demands for infrastructure supportive of innovative research and its implementation in healthcare and prevention programs. Establishing translational research defined as a coherent cancer research continuum is still a challenge. Research has to cover the entire continuum from basic to outcomes research for clinical and prevention modalities. Comprehensive Cancer Centres (CCCs) are of critical importance for integrating research innovations to preclinical and clinical research, as for ensuring state-of-the-art patient care within healthcare systems. International collaborative networks between CCCs are necessary to reach the critical mass of infrastructures and patients for PCM research, and for introducing prevention modalities and new treatments effectively. Outcomes and health economics research are required to assess the cost-effectiveness of new interventions, currently a missing element in the research portfolio. Data sharing and critical mass are essential for innovative research to develop PCM. Despite advances in cancer research, cancer incidence and prevalence is growing. Making cancer research infrastructures accessible for all patients, considering the increasing inequalities, requires science policy actions incentivizing research aimed at prevention and cancer therapeutics/care with an increased focus on patients' needs and cost-effective healthcare.


Asunto(s)
Neoplasias , Humanos , Ciudad del Vaticano , Neoplasias/prevención & control , Investigación Biomédica Traslacional , Atención a la Salud , Medicina de Precisión
2.
Am J Hum Genet ; 110(10): 1690-1703, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673066

RESUMEN

Esophageal squamous cell carcinoma (ESCC) has a high disease burden in sub-Saharan Africa and has a very poor prognosis. Genome-wide association studies (GWASs) of ESCC in predominantly East Asian populations indicate a substantial genetic contribution to its etiology, but no genome-wide studies have been done in populations of African ancestry. Here, we report a GWAS in 1,686 African individuals with ESCC and 3,217 population-matched control individuals to investigate its genetic etiology. We identified a genome-wide-significant risk locus on chromosome 9 upstream of FAM120A (rs12379660, p = 4.58 × 10-8, odds ratio = 1.28, 95% confidence interval = 1.22-1.34), as well as a potential African-specific risk locus on chromosome 2 (rs142741123, p = 5.49 × 10-8) within MYO1B. FAM120A is a component of oxidative stress-induced survival signals, and the associated variants at the FAM120A locus co-localized with highly significant cis-eQTLs in FAM120AOS in both esophageal mucosa and esophageal muscularis tissue. A trans-ethnic meta-analysis was then performed with the African ESCC study and a Chinese ESCC study in a combined total of 3,699 ESCC-affected individuals and 5,918 control individuals, which identified three genome-wide-significant loci on chromosome 9 at FAM120A (rs12379660, pmeta = 9.36 × 10-10), chromosome 10 at PLCE1 (rs7099485, pmeta = 1.48 × 10-8), and chromosome 22 at CHEK2 (rs1033667, pmeta = 1.47 × 10-9). This indicates the existence of both shared and distinct genetic risk loci for ESCC in African and Asian populations. Our GWAS of ESCC conducted in a population of African ancestry indicates a substantial genetic contribution to ESCC risk in Africa.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Pueblos del Este de Asia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Pueblo Africano
3.
Trends Microbiol ; 30(12): 1119-1120, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36229380

RESUMEN

The Tianjin Biosecurity Guidelines for Codes of Conduct for Scientists are a set of ten principles designed to promote responsible science and strengthen biosecurity governance. They should be broadly adopted, including being endorsed by the Biological Weapons Convention at its 9th Review Conference in November 2022.


Asunto(s)
Armas Biológicas , Bioaseguramiento
4.
Int J Cancer ; 150(2): 347-361, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34591985

RESUMEN

Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNß1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNß1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Neoplasias Esofágicas/diagnóstico , Proteínas Nucleares/metabolismo , Secretoma/metabolismo , Neoplasias del Cuello Uterino/diagnóstico , Transporte Activo de Núcleo Celular , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas de Esófago/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/metabolismo , Adulto Joven
5.
Oncol Rep ; 46(4)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34490482

RESUMEN

Cancer arises from a multi­step cellular transformation process where some mutations may be inherited, while others are acquired during the process of malignant transformation. Aberrations in the BCL2 associated transcription factor 1 (BCLAF1) gene have previously been identified in patients with cancer and the aim of the present study was to identify structural variants (SVs) and the effects of BCLAF1 gene silencing on cell transformation. Whole­genome sequencing was performed on DNA isolated from tumour biopsies with a histologically confirmed diagnosis of oesophageal squamous cell carcinoma (OSCC). Paired­end sequencing was performed on the Illumina HiSeq2000, with 300 bp reads. Reads were aligned to the Homo sapiens reference genome (NCBI37) using ELAND and CASAVA software. SVs reported from the alignment were collated with gene loci, using the variant effect predictor of Ensembl. The affected genes were subsequently cross­checked against the Genetic Association Database for disease and cancer associations. BCLAF1 deletion was identified as a noteworthy SV that could be associated with OSCC. Transient small interfering RNA­mediated knockdown of BCLAF1 resulted in the altered expression of several downstream genes, including downregulation of the proapoptotic genes Caspase­3 and BAX and the DNA damage repair genes exonuclease 1, ATR­interacting protein and transcription regulator protein BACH1. BCLAF1 deficiency also attenuated P53 gene expression. Inhibition of BCLAF1 expression also resulted in increased colony formation. These results provide evidence that the abrogation of BCLAF1 expression results in the dysregulation of several cancer signalling pathways and abnormal cell proliferation.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Secuenciación Completa del Genoma , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación
6.
Clin Cancer Res ; 27(22): 6135-6144, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34465601

RESUMEN

PURPOSE: DNA methylation alterations have emerged as front-runners in cell-free DNA (cfDNA) biomarker development. However, much effort to date has focused on single cancers. In this context, gastrointestinal (GI) cancers constitute the second leading cause of cancer-related deaths worldwide; yet there is no blood-based assay for the early detection and population screening of GI cancers. EXPERIMENTAL DESIGN: Herein, we performed a genome-wide DNA methylation analysis of multiple GI cancers to develop a pan-GI diagnostic assay. By analyzing DNA methylation data from 1,781 tumor and adjacent normal tissues, we first identified differentially methylated regions (DMR) between individual GI cancers and adjacent normal, as well as across GI cancers. We next prioritized a list of 67,832 tissue DMRs by incorporating all significant DMRs across various GI cancers to design a custom, targeted bisulfite sequencing platform. We subsequently validated these tissue-specific DMRs in 300 cfDNA specimens and applied machine learning algorithms to develop three distinct categories of DMR panels RESULTS: We identified three distinct DMR panels: (i) cancer-specific biomarker panels with AUC values of 0.98 (colorectal cancer), 0.98 (hepatocellular carcinoma), 0.94 (esophageal squamous cell carcinoma), 0.90 (gastric cancer), 0.90 (esophageal adenocarcinoma), and 0.85 (pancreatic ductal adenocarcinoma); (ii) a pan-GI panel that detected all GI cancers with an AUC of 0.88; and (iii) a multi-cancer (tissue of origin) prediction panel, EpiPanGI Dx, with a prediction accuracy of 0.85-0.95 for most GI cancers. CONCLUSIONS: Using a novel biomarker discovery approach, we provide the first evidence for a cfDNA methylation assay that offers robust diagnostic accuracy for GI cancers.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Metilación de ADN , Detección Precoz del Cáncer/métodos , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/genética , Perfilación de la Expresión Génica/métodos , Área Bajo la Curva , Epigénesis Genética , Epigenómica/métodos , Humanos , Curva ROC
7.
Cancer Res ; 81(10): 2612-2624, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33741694

RESUMEN

Epigenetic mechanisms such as aberrant DNA methylation (DNAme) are known to drive esophageal squamous cell carcinoma (ESCC), yet they remain poorly understood. Here, we studied tumor-specific DNAme in ESCC cases from nine high-incidence countries of Africa, Asia, and South America. Infinium MethylationEPIC array was performed on 108 tumors and 51 normal tissues adjacent to the tumors (NAT) in the discovery phase, and targeted pyrosequencing was performed on 132 tumors and 36 NAT in the replication phase. Top genes for replication were prioritized by weighting methylation results using RNA-sequencing data from The Cancer Genome Atlas and GTEx and validated by qPCR. Methylome analysis comparing tumor and NAT identified 6,796 differentially methylated positions (DMP) and 866 differential methylated regions (DMR), with a 30% methylation (Δß) difference. The majority of identified DMPs and DMRs were hypermethylated in tumors, particularly in promoters and gene-body regions of genes involved in transcription activation. The top three prioritized genes for replication, PAX9, SIM2, and THSD4, had similar methylation differences in the discovery and replication sets. These genes were exclusively expressed in normal esophageal tissues in GTEx and downregulated in tumors. The specificity and sensitivity of these DNAme events in discriminating tumors from NAT were assessed. Our study identified novel, robust, and crucial tumor-specific DNAme events in ESCC tumors across several high-incidence populations of the world. Methylome changes identified in this study may serve as potential targets for biomarker discovery and warrant further functional characterization. SIGNIFICANCE: This largest genome-wide DNA methylation study on ESCC from high-incidence populations of the world identifies functionally relevant and robust DNAme events that could serve as potential tumor-specific markers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2612/F1.large.jpg.


Asunto(s)
Biomarcadores de Tumor/genética , Metilación de ADN , ADN de Neoplasias/genética , Epigénesis Genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Genoma Humano , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , ADN de Neoplasias/análisis , Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/epidemiología , Carcinoma de Células Escamosas de Esófago/genética , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Salud Global , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Pronóstico
8.
Mol Cancer Res ; 18(9): 1340-1353, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32503923

RESUMEN

There is accumulating evidence for a link between circadian clock disruption and cancer progression. In this study, the circadian clock was investigated in cervical and esophageal cancers, to determine whether it is disrupted in these cancer types. Oncomine datamining revealed downregulation of multiple members of the circadian clock gene family in cancer patient tissue compared with matched normal epithelium. Real-time RT-PCR analysis confirmed significant downregulation of CLOCK, PER1, PER2, PER3, CRY1, CRY2, REV-ERBα, and RORα in esophageal tumor tissue. In cell line models, expression of several circadian clock genes was significantly decreased in transformed and cancer cells compared with noncancer controls, and protein levels were dysregulated. These effects were mediated, at least in part, by methylation, where CLOCK, CRY1, and RORα gene promoter regions were found to be methylated in cancer cells. Overexpression of CLOCK and PER2 in cancer cell lines inhibited cell proliferation and activation of RORα and REV-ERBα using agonists resulted in cancer cell death, while having a lesser effect on normal epithelial cells. Despite dysregulated circadian clock gene expression, cervical and esophageal cancer cells maintain functional circadian oscillations after Dexamethasone synchronization, as revealed using real-time bioluminescence imaging, suggesting that their circadian clock mechanisms are intact. IMPLICATIONS: This study is a first to describe dysregulated, yet oscillating, circadian clock gene expression in cervical and esophageal cancer cells, and knowledge of circadian clock functioning in these cancer types has the potential to inform chronotherapy approaches, where the timing of administration of chemotherapy is optimized on the basis of the circadian clock.


Asunto(s)
Relojes Circadianos/genética , Neoplasias Esofágicas/genética , Genes Supresores de Tumor/fisiología , Neoplasias del Cuello Uterino/genética , Proliferación Celular , Regulación hacia Abajo , Neoplasias Esofágicas/patología , Femenino , Humanos , Neoplasias del Cuello Uterino/patología
9.
Front Genet ; 10: 406, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118947

RESUMEN

Esophageal squamous cell carcinoma (ESCC) has a high prevalence in several countries in Africa and Asia. Previous genome-wide association studies (GWAS) in Chinese populations have identified several ESCC susceptibility loci, including variants on chromosome 2q33 and 6p21, but the contribution of these loci to risk in African populations is unknown. In this study we tested the association of 10 genetic variants at these two risk loci on susceptibility to ESCC in two South African ethnic groups. Variants at 2q33 (rs3769823, rs10931936, rs13016963, rs7578456, rs2244438) and 6p21 (rs911178, rs3763338, rs2844695, rs17533090, rs1536501) were genotyped in a set of Black Xhosa (463 cases and 480 controls) and Mixed Ancestry (269 cases and 288 controls) individuals. Genotyping was performed using TaqMan allelic discrimination assays. The Pearson's chi-squared test was used to compare the allele frequency between cases and controls. Gene-environment interactions with tobacco smoking and alcohol consumption were investigated in a case-control analysis. A logistic regression analysis was further performed to elucidate the independent effect of each association signal on the risk of ESCC. The 2q33 variants rs10931936, rs7578456, and rs2244438 were marginally associated with higher risk of ESCC in the Mixed Ancestry population (ORs = 1.39-1.58, p ≤ 0.035), of which rs7578456 and rs2244438 remained significant after multiple correction (p < 0.005). The associations with rs7578456 and rs2244438 were also observed across strata of tobacco smoking (ORs = 1.47-2.75, p ≤ 0.035) and alcohol consumption (ORs = 1.45-2.06, p ≤ 0.085) status. However, only the association with rs2244438, which lies within an exon of TRAK2, remained significant after adjustment for the other variants in the region. Interestingly, none of the variants tested were significantly associated with ESCC in the Black South African population. These finding implicate TRAK2 as a casual gene for ESCC risk in the Mixed Ancestry population of South Africa and confirm prior evidence of population-specific differences in the genetic contribution to ESCC, which may reflect differences in genetic architecture and environmental exposure across ethnic groups.

10.
BMC Cancer ; 19(1): 248, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894168

RESUMEN

BACKGROUND: Garlic has been used for centuries for its flavour and health promoting properties that include protection against cancer. The vinyl disulfide-sulfoxide ajoene is one of the phytochemicals found in crushed cloves, hypothesised to act by S-thiolating reactive cysteines in target proteins. METHODS: Using our fluorescently labelled ajoene analogue called dansyl-ajoene, ajoene's protein targets in MDA-MB-231 breast cancer cells were tagged and separated by 2D electrophoresis. A predominant band was identified by MALDI-TOF MS/MS to be vimentin. Target validation experiments were performed using pure recombinant vimentin protein. Computational modelling of vimentin bound to ajoene was performed using Schrödinger and pKa calculations by Epik software. Cytotoxicity of ajoene in MDA-MB-231 and HeLa cells was measured by the MTT assay. The vimentin filament network was visualised in ajoene-treated and non-treated cells by immunofluorescence and vimentin protein expression was determined by immunoblot. The invasion and migration activity was measured by wound healing and transwell assays using wildtype cells and cells in which the vimentin protein had been transiently knocked down by siRNA or overexpressed. RESULTS: The dominant protein tagged by dansyl-ajoene was identified to be the 57 kDa protein vimentin. The vimentin target was validated to reveal that ajoene and dansyl-ajoene covalently bind to recombinant vimentin via a disulfide linkage at Cys-328. Computational modelling showed Cys-328 to be exposed at the termini of the vimentin tetramer. Treatment of MDA-MB-231 or HeLa cells with a non-cytotoxic concentration of ajoene caused the vimentin filament network to condense; and to increase vimentin protein expression. Ajoene inhibited the invasion and migration of both cancer cell lines which was found to be dependent on the presence of vimentin. Vimentin overexpression caused cells to become more migratory, an effect that was completely rescued by ajoene. CONCLUSIONS: The garlic-derived phytochemical ajoene targets and covalently modifies vimentin in cancer cells by S-thiolating Cys-328. This interaction results in the disruption of the vimentin filament network and contributes to the anti-metastatic activity of ajoene in cancer cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Disulfuros/farmacología , Ajo/química , Neoplasias/tratamiento farmacológico , Vimentina/metabolismo , Línea Celular Tumoral , Simulación por Computador , Disulfuros/metabolismo , Disulfuros/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Invasividad Neoplásica/prevención & control , Neoplasias/patología , Unión Proteica , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sulfóxidos , Vimentina/aislamiento & purificación
11.
Carcinogenesis ; 40(4): 513-520, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-30753320

RESUMEN

Oesophageal squamous cell carcinoma (OSCC) has a high incidence in southern Africa and a poor prognosis. Limited information is available on the contribution of genetic variants in susceptibility to OSCC in this region. However, recent genome-wide association studies have identified multiple susceptibility loci in Asian and European populations. In this study, we investigated genetic variants from seven OSCC risk loci identified in non-African populations for association with OSCC in the South African Black population. We performed association studies in a total of 1471 cases and 1791 controls from two study sample groups, which included 591 cases and 852 controls from the Western Cape and 880 cases and 939 controls from the Johannesburg region in the Gauteng province. Thereafter, we performed a meta-analysis for 11 variants which had been genotyped in both studies. A single nucleotide polymorphism in the CHEK2 gene, rs1033667, was significantly associated with OSCC [P = 0.002; odds ratio (OR) = 1.176; 95% confidence interval (CI): 1.06-1.30]. However, single nucleotide polymorphisms in the CASP8/ALS2CR12, TMEM173, PLCE1, ALDH2, ATP1B2/TP53 and RUNX1 loci were not associated with the disease (P > 0.05). The lack of association of six of these loci with OSCC in South African populations may reflect different genetic risk factors in non-African and African populations or differences in the genetic architecture of African genomes. The association at CHEK2, a gene with key roles in cell cycle regulation and DNA repair, in an African population provides further support for the contribution of common genetic variants at this locus to the risk of oesophageal cancer.


Asunto(s)
Población Negra/genética , Quinasa de Punto de Control 2/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Fumar/genética , Sudáfrica
12.
OMICS ; 22(12): 733-748, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30571609

RESUMEN

Most solid tumors become therapy resistant and will relapse, with no durable treatment option available. One major impediment to our understanding of cancer biology and finding innovative approaches to cancer treatment stems from the lack of better preclinical tumor models that address and explain tumor heterogeneity and person-to-person differences in therapeutic and toxic responses. Past cancer research has been driven by inadequate in vitro assays utilizing two-dimensional monolayers of cancer cells and animal models. Additionally, animal models do not truly mimic the original human tumor, are time consuming, and usually costly. New preclinical models are needed for innovation in cancer translational research. Hence, it is time to welcome the three-dimensional (3D) organoids: self-organizing cells grown in 3D culture systems mimicking the parent tissues from which the primary cells originate. The 3D organoids offer deeper insights into the crucial cellular processes in tissue and organ formation and pathological processes. Generation of near-perfect physiological microenvironments allow 3D organoids to couple with gene editing tools, such as the clustered regularly interspersed short palindromic repeat (CRISPR)/CRISPR-associated 9 and the transcription activator-like effector nucleases to model human diseases, offering distinct advantages over current models. We explain in this expert review that through recapitulating patients' normal and tumor tissues, organoid technology can markedly advance personalized medicine and help reveal once hidden aspects of cancers. The use of defined tissue- or organ-specific matrices, among other factors, will likely allow organoid technology to realize its potential in innovating many fields of life sciences.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Organoides/citología , Organoides/metabolismo , Animales , Humanos , Medicina de Precisión , Investigación Biomédica Traslacional
13.
J Glob Oncol ; 4: 1-9, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30241229

RESUMEN

Esophageal cancer is the eighth most common cancer worldwide and the sixth most common cause of cancer-related death; however, worldwide incidence and mortality rates do not reflect the geographic variations in the occurrence of this disease. In recent years, increased attention has been focused on the high incidence of esophageal squamous cell carcinoma (ESCC) throughout the eastern corridor of Africa, extending from Ethiopia to South Africa. Nascent investigations are underway at a number of sites throughout the region in an effort to improve our understanding of the etiology behind the high incidence of ESCC in this region. In 2017, these sites established the African Esophageal Cancer Consortium. Here, we summarize the priorities of this newly established consortium: to implement coordinated multisite investigations into etiology and identify targets for primary prevention; to address the impact of the clinical burden of ESCC via capacity building and shared resources in treatment and palliative care; and to heighten awareness of ESCC among physicians, at-risk populations, policy makers, and funding agencies.


Asunto(s)
Neoplasias Esofágicas/epidemiología , África/epidemiología , Financiación del Capital , Costo de Enfermedad , Neoplasias Esofágicas/etiología , Neoplasias Esofágicas/prevención & control , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/epidemiología , Geografía Médica , Política de Salud , Recursos en Salud , Humanos , Cuidados Paliativos , Vigilancia de la Población , Medición de Riesgo , Factores de Riesgo
14.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241395

RESUMEN

BACKGROUND: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. METHODS: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. RESULTS: The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20⁻60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30⁻50%, and reduced colony formation and cancer cell migration. CONCLUSION: Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.


Asunto(s)
Carcinoma de Células Escamosas/patología , Resistencia a Antineoplásicos , Neoplasias Esofágicas/patología , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Apoptosis , Carcinoma de Células Escamosas/tratamiento farmacológico , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colágeno/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Matriz Extracelular , Femenino , Fibronectinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Laminina/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal
15.
Molecules ; 23(4)2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29673198

RESUMEN

Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might occur. Method: We report here on the effects of benzo-α-pyrene on esophageal cancer cells in vitro, alone, or in combination with chemotherapeutic drugs cisplatin, 5-flurouracil, or paclitaxel. As the study endpoints, we employed expression of proteins involved in cell proliferation, drug metabolism, apoptosis, cell cycle analysis, colony formation, migration, and signaling cascades in the WHCO1 esophageal cancer cell line after 24 h of treatment. Results: Benzo-α-pyrene had no significant effect on WHCO1 cancer cell proliferation but reversed the effect of chemotherapeutic drugs by reducing drug-induced cell death and apoptosis by 30−40% compared to drug-treated cells. The three drugs significantly reduced WHCO1 cell migration by 40−50% compared to control and BaP-treated cells. Combined exposure to drugs was associated with significantly increased apoptosis and reduced colony formation. Evaluation of survival signaling cascades showed that although the MEK-ERK and Akt pathways were activated in the presence of drugs, BaP was a stronger activator of the MEK-ERK and Akt pathways than the drugs. Conclusion: The present study suggest that BaP can reverse the effects of drugs on cancer cells via the activation of survival signaling pathways and upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Our data show that BaP contribute to the development of chemoresistant cancer cells.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Pirenos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Humanos , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
OMICS ; 22(1): 17-34, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29356626

RESUMEN

Disruptive innovations in medicine are game-changing in nature and bring about radical shifts in the way we understand human diseases, their treatment, and/or prevention. Yet, disruptive innovations in cancer drug design and development are still limited. Therapies that cure all cancer patients are in short supply or do not exist at all. Chief among the causes of this predicament is drug resistance, a mechanism that is much more dynamic than previously understood. Drug resistance has limited the initial success experienced with biomarker-guided targeted therapies as well. A major contributor to drug resistance is intratumor heterogeneity. For example, within solid tumors, there are distinct subclones of cancer cells, presenting profound complexity to cancer treatment. Well-known contributors to intratumor heterogeneity are genomic instability, the microenvironment, cellular genotype, cell plasticity, and stochastic processes. This expert review explains that for oncology drug design and development to be more innovative, we need to take into account intratumor heterogeneity. Initially thought to be the preserve of cancer cells, recent evidence points to the highly heterogeneous nature and diverse locations of stromal cells, such as cancer-associated fibroblasts (CAFs) and cancer-associated macrophages (CAMs). Distinct subpopulations of CAFs and CAMs are now known to be located immediately adjacent and distant from cancer cells, with different subpopulations exerting different effects on cancer cells. Disruptive innovation and precision medicine in clinical oncology do not have to be a distant reality, but can potentially be achieved by targeting these spatially separated and exclusive cancer cell subclones and CAF subtypes. Finally, we emphasize that disruptive innovations in drug discovery and development will likely come from drugs whose effect is not necessarily tumor shrinkage.


Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Evolución Clonal/genética , Manejo de la Enfermedad , Diseño de Fármacos , Desarrollo de Medicamentos , Heterogeneidad Genética , Variación Genética , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fenotipo , Procesos Estocásticos , Microambiente Tumoral
17.
Front Oncol ; 7: 258, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29164058

RESUMEN

Although high-risk human papillomaviruses (HPVs) are the major risk factors for cervical cancer they have been associated with several other cancers, such as head and neck and oral cancers. Since integration of low-risk HPV11 DNA has been demonstrated in esophageal tumor genomes, this study compared the effects of low-risk HPV11E6 and high-risk HPV18E6 on cellular gene expression. The HPV11E6 and HPV18E6 genes were cloned into an adenoviral vector and expressed in human keratinocytes (HaCaT) in order to investigate early events and to eliminate possible artifacts introduced by selective survival of fast growing cells in stable transfection experiments. HPV11E6 had very little effect on p21 and p53 gene expression, while HPV18E6 resulted in a marked reduction in both these proteins. Both HPV11E6 and HPV18E6 enabled growth of colonies in soft agar, but the level of colony formation was higher in HPV18E6 infected cells. DNA microarray analysis identified significantly differentially regulated genes involved in the cellular transformation signaling pathways. These findings suggest that HPV11E6 and HPV18E6 are important in initiating cellular transformation via deregulation of signaling pathways such as PI3K/AKT and pathways that are directly involved in DNA damage repair, cell survival, and cell proliferation. This study shows that the low-risk HPV11E6 may have similar effects as the high-risk HPV18E6 during the initial stages of infection, but at a much reduced level.

18.
Int J Mol Sci ; 18(7)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28754000

RESUMEN

Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially 'omics' technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously 'unsupportive' microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/patología , Microambiente Tumoral , Supervivencia Celular , Epigénesis Genética , Matriz Extracelular/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células Madre Mesenquimatosas/patología , Modelos Biológicos , Neoplasias/genética , Transducción de Señal
19.
Molecules ; 22(6)2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28555042

RESUMEN

Garlic is a food and medicinal plant that has been used in folk medicine since ancient times for its beneficial health effects, which include protection against cancer. Crushed garlic cloves contain an array of small sulfur-rich compounds such as ajoene. Ajoene is able to interfere with biological processes and is cytotoxic to cancer cells in the low micromolar range. BisPMB is a synthetic ajoene analogue that has been shown in our laboratory to have superior cytotoxicity to ajoene. In the current study we have performed a DNA microarray analysis of bisPMB-treated WHCO1 oesophageal cancer cells to identify pathways and processes that are affected by bisPMB. The most significantly enriched biological pathways as assessed by gene ontology, KEGG and ingenuity pathway analysis were those involving protein processing in the endoplasmic reticulum (ER) and the unfolded protein response. In support of these pathways, bisPMB was found to inhibit global protein synthesis and lead to increased levels of ubiquitinated proteins. BisPMB also induced alternate splicing of the transcription factor XBP-1; increased the expression of the ER stress sensor GRP78 and induced expression of the ER stress marker CHOP/GADD153. CHOP expression was found to be central to the cytotoxicity of bisPMB as its silencing with siRNA rendered the cells resistant to bisPMB. The MAPK proteins, JNK and ERK1/2 were activated following bisPMB treatment. However JNK activation was not critical in the cytotoxicity of bisPMB, and ERK1/2 activation was found to play a pro-survival role. Overall the ajoene analogue bisPMB appears to induce cytotoxicity in WHCO1 cells by activating the unfolded protein response through CHOP/GADD153.


Asunto(s)
Disulfuros/farmacología , Neoplasias Esofágicas/metabolismo , Factor de Transcripción CHOP/metabolismo , Línea Celular Tumoral , Disulfuros/química , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Sulfóxidos , Respuesta de Proteína Desplegada/efectos de los fármacos
20.
OMICS ; 20(12): 681-691, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27930094

RESUMEN

Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.


Asunto(s)
Oncología Médica/métodos , Células Madre Neoplásicas/metabolismo , Biomarcadores de Tumor/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...